skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tomberlin, Jeffery K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Liu, Yan-Qun (Ed.)
    Abstract The current study evaluated the potential enhancement of lauric acid (LA) in black soldier fly, Hermetia illucens, (L.) (Diptera: Stratiomyidae) larvae (BSFL), a source of this short-chain fatty acid which has antimicrobial and immunostimulatory properties. Replicate groups of BSFL were reared on either the coconut or Gainesville diet for 7 days. After the rearing period, BSFL were harvested, purged, dried, and subjected to proximate, fatty acid and amino acid compositions, and pepsin digestibility analyses. Results demonstrate changes in proximate composition. BSFL reared on the coconut had significantly (P = 0.002) higher lipid content (47.3% vs. 25.2%) on a dry-matter basis. The LA concentration in BSFL produced on the coconut was 31% greater than those reared on Gainesville, resulting in almost 150% more LA. Furthermore, BSFL-fed coconut had reduced crude protein (29.7% of dry weight) and ash (3.7% of dry weight) relative to those fed Gainesville (43.4% and 7.5% for crude protein and ash, respectively) but higher pepsin digestibility (91.0% vs. 87.0%). The relative amounts of various amino acids in the 2 BSFL meals did not differ extensively, with statistically lower concentrations of only phenylalanine and tryptophan and higher concentrations of alanine, arginine, isoleucine, leucine, and serine in BSFL reared on coconut. Results demonstrate that the nutritional composition of BSFL can be manipulated, and an enhancement of LA concentrations of 150% was achieved with coconut, which has value for BSFL as a feed for various livestock, including aquaculture. Lower protein content is a tradeoff in terms of BSFL value as a feed additive. 
    more » « less
  2. de_Oliveira, Mozaniel Santana (Ed.)
    Mycolactone is a cytotoxic lipid metabolite produced byMycobacterium ulcerans, the environmental pathogen responsible for Buruli ulcer, a neglected tropical disease.Mycobacterium ulceransis prevalent in West Africa, particularly found in lentic environments, where mosquitoes also occur. Researchers hypothesize mosquitoes could serve as a transmission mechanism resulting in infection byM.ulceranswhen mosquitoes pierce skin contaminated withM.ulcerans. The interplay between the pathogen, mycolactone, and mosquito is only just beginning to be explored. A triple-choice assay was conducted to determine the host-seeking preference ofAedes aegyptibetweenM.ulceranswildtype (MU, mycolactone active) and mutant (MUlac-, mycolactone inactive). Both qualitative and quantitative differences in volatile organic compounds’ (VOCs) profiles of MU and MUlac-were determined by GC-MS. Additionally, we evaluated the interplay betweenAe.aegyptiproximity andM.ulceransmRNA expression. The results showed that mosquito attraction was significantly greater (126.0%) to an artificial host treated with MU than MUlac-. We found that MU and MUlacproduced differential profiles of VOCs associated with a wide range of biological importance from quorum sensing (QS) to human odor components. RT-qPCR assays showed that mycolactone upregulation was 24-fold greater for MU exposed toAe.aegyptiin direct proximity. Transcriptome data indicated significant induction of ten chromosomal genes of MU involved in stress responses and membrane protein, compared to MUlac-when directly having access to or in near mosquito proximity. Our study provides evidence of possible interkingdom interactions between unicellular and multicellular species that MU present on human skin is capable of interreacting with unrelated species (i.e., mosquitoes), altering its gene expression when mosquitoes are in direct contact or proximity, potentially impacting the production of its VOCs, and consequently leading to the stronger attraction of mosquitoes toward human hosts. This study elucidates interkingdom interactions between viableM.ulceransbacteria andAe.aegyptimosquitoes, which rarely have been explored in the past. Our finding opens new doors for future research in terms of disease ecology, prevalence, and pathogen dispersal outside of theM.ulceranssystem. 
    more » « less